Very few people alive today have seen the Appalachian forests as they existed a century ago. Even as state and national parks preserved ever more of the ecosystem, fungal pathogens from Asia nearly wiped out one of the dominant species of these forests, the American chestnut, killing an estimated 3 billion trees. While new saplings continue to sprout from the stumps of the former trees, the fungus persists, killing them before they can seed a new generation.
But thanks in part to trees planted in areas where the two fungi don’t grow well, the American chestnut isn’t extinct. And efforts to revive it in its native range have continued, despite the long generation times needed to breed resistant trees. In Thursday’s issue of Science, researchers describe their efforts to apply modern genomic techniques and exhaustive testing to identify the best route to restoring chestnuts to their native range.
Multiple paths to restoration
While the American chestnut is functionally extinct—it’s no longer a participant in the ecosystems it once dominated—it’s most certainly not extinct. Two Asian fungi that have killed it off in its native range; one causes chestnut blight, while a less common pathogen causes a root rot disease. Both prefer warmer, humid environments and persist there because they can grow asymptomatically on distantly related trees, such as oaks. Still, chestnuts planted outside the species’ original range—primarily in drier areas of western North America—have continued to thrive.


